COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Distillation of Binary system

- Because the vapor of a binary mixture is always richer in the more volatile constituent, the process of distillation can be used to separate the more volatile from the less volatile constituent.
- Ideal mixture

5-4. Boiling point diagram of an ideal binary mix

16

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Distillation of Binary system

- Azeotropic mixture?
- ➤ Positive deviation: maximum pressure, lowest
- BP of the azeotropic and pure substance will remain in the flask.
- Ex: ethanol and water
- ➤ Negative deviation: minimum pressure, highest BP of the azeotropic (that will remain in the flask) and the pure will distillate of.

Ex: water and acetic acid

>Immiscible solvents?

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Colligative properties

- •Why it is called colligative?
- Conditions:
 - Nonvolatile and nonelectrolyte solutes
 - Volatile solvents
- The solute reduces the <u>escaping tendency</u> of the solvent and, on the basis of Raoult's law, the vapor pressure of a solution containing a nonvolatile solute is lowered proportional to the relative number.

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Vapor pressure lowering

Molar ratio $X_1 + X_2 = 1$

 $X_1 = 1 - X_2$

H.W// Mathematically explain why, ΔP is a colligative properties?

$$p = p_1^{\circ}(1 - X_2) \tag{5-13}$$

$$p_1{}^{a} - p = p_1{}^{p} X_2 {(5-14)}$$

$$\frac{p_1^{\circ} - p}{p_1^{\circ}} = \frac{\Delta p}{p_1^{\circ}} = X_2 = \frac{n_2}{n_1 + n_2}$$
 (5-15)

 $\Delta p = p_1^{\circ} - p$ is the lowering of the vapor pressure and $\Delta p/p_1^{\circ}$ is the relative vapor pressure lo ering.

19

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH The normal boiling point is the temperature at which the vapor pressure of the liquid becomes equal to an external pressure. A solution will boil at a higher temperature than will the pure solvent. the more of the solute that is dissolved, the greater is the

effect.

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Depression of freezing point

- The normal T_f of a pure compound is the temperature at which the solid and the liquid phases are in equilibrium under a pressure of 1 atm.
- At these conditions both the liquid and the solid have the same escaping tendency.
- Triple point: is the point at which solid, liquid and vapor are in equilibrium.

solute (not to scale).

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Depression of freezing point

- If a solute is dissolved in the liquid at the triple point, the escaping tendency of the liquid solvent is lowered below that of the pure solid solvent.
- The temperature must drop to reestablish equilibrium between the liquid and the solid.
- The freezing point of a solution is always lower than that of the pure solvent.

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Calculating the Osmotic Pressure of a Sucrose Solution

One gram of sucrose, molecular weight 342, is dissolved in 100 mL of solution at 25°C. What is the osmotic pressure of the solution? We have

Moles of sucrose
$$=$$
 $\frac{1.0}{342} = 0.0029$
 $\pi \times 0.10 = 0.0029 \times 0.082 \times 298$
 $\pi = 0.71$ atm

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

To relate vapor pressure lowering and osmotic pressure, we must obtain the free energy changes involved in (a) transferring 1 mole of solvent from solvent to solution by a distillation process through the vapor phase and (b) transferring 1 mole of solvent from solvent to solution by osmosis. We have

(a)
$$\Delta G = RT \quad \ln \frac{p}{p^{\circ}}$$
 (5-33)

Thermodynamic equation

$$\pi = \frac{RT}{V_1} \ln \frac{p^{\circ}}{p}$$

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH MOLECULAR WEIGHT DETERMINATION The four colligative properties can be used to calculate the molecular weights of nonelectrolytes present as solutes. Using vapor pressure lowering $\frac{\Delta p}{p_1^{\circ}} = \frac{w_2/M_2}{w_1/M_1} \longrightarrow M_2 = \frac{w_2 M_1 p_1^{\circ}}{w_1 \Delta p}$ Using boining point elevation $\Delta T_b = K_b m$ $m = \frac{w_2/M_2}{w_1} \times 1000 = \frac{1000 w_2}{w_1 M_1}$

